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Why We’re Doing It

The four loop cusp anomalous dimensions in QCD!
The QCD form factors in dimensional regularization satisfy a
renormalization group equation which was understood long ago

L. Magnea and G. Sterman, Phys.Rev. D42 (1990) 4222
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Why We’re Doing It

The four loop cusp anomalous dimensions in QCD!
The QCD form factors in dimensional regularization satisfy a
renormalization group equation which was understood long ago

L. Magnea and G. Sterman, Phys.Rev. D42 (1990) 4222
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At L loops, ΓL characterizes the leading IR divergences which cannot
be understood as exponentiated lower-loop contributions.
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Why We’re Doing It

The four loop cusp anomalous dimensions in QCD!
The QCD form factors in dimensional regularization satisfy a
renormalization group equation which was understood long ago

L. Magnea and G. Sterman, Phys.Rev. D42 (1990) 4222
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K (αs) = −Γ(αs)

At L loops, ΓL characterizes the leading IR divergences which cannot
be understood as exponentiated lower-loop contributions.

=⇒ Γ4 is the last unknown ingredient needed for N3LL resummation!
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A Dipole Formula For Gauge Theory IR Divergences?

S. Catani, Phys. Lett. B427 (1998) 161; S. Mert Aybat et. al., Phys. Rev. D74 (2006) 074004

T. Becher and M. Neubert, JHEP 0906 (2009) 081; E. Gardi and L. Magnea, JHEP 0903 (2009) 079

The IR divergences of the simplest non-Abelian gauge theory, planar
SU(Nc) N = 4 super Yang-Mills, are believed to be of the form:

AN=4
1 (p1, . . . , pn) = exp
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At four points, this structure has been realized explicitly at strong
coupling (L. F. Alday and J. Maldacena, JHEP 0706 (2007) 064). In a nutshell, the
dipole conjecture is the suggestion that, with minor modifications, the
above structure could hold for more general gauge theories like QCD.
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When Something Sounds Too Good To Be True...

Although some three-loop evidence was collected by Dixon
(Phys. Rev. D79 (2009) 091501) for the nf terms, it is now clear that the

dipole conjecture fails for QCD due to three-loop calculations which
probe the structure of the soft anomalous dimension matrix.

S. Caron-Huot, JHEP 1505 (2015) 093; Ø. Almelid et. al., arXiv:1507.00047;

J. Henn and B. Mistlberger, arXiv:1608.00850
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When Something Sounds Too Good To Be True...

Although some three-loop evidence was collected by Dixon
(Phys. Rev. D79 (2009) 091501) for the nf terms, it is now clear that the

dipole conjecture fails for QCD due to three-loop calculations which
probe the structure of the soft anomalous dimension matrix.

S. Caron-Huot, JHEP 1505 (2015) 093; Ø. Almelid et. al., arXiv:1507.00047;

J. Henn and B. Mistlberger, arXiv:1608.00850

In fact, Casimir scaling for the light-like cusp anomalous dimension

Γg
L

?
= CA/CFΓ

q
L

is still very much an open problem at four loops.
R. Boels et. al., JHEP 1302 (2013) 063; Nucl. Phys. B902 (2016) 387;

A. Grozin et. al., JHEP 1601 (2016) 140; J. Henn et. al., JHEP 1605 (2016) 066
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When Something Sounds Too Good To Be True...

Although some three-loop evidence was collected by Dixon
(Phys. Rev. D79 (2009) 091501) for the nf terms, it is now clear that the

dipole conjecture fails for QCD due to three-loop calculations which
probe the structure of the soft anomalous dimension matrix.

S. Caron-Huot, JHEP 1505 (2015) 093; Ø. Almelid et. al., arXiv:1507.00047;

J. Henn and B. Mistlberger, arXiv:1608.00850

In fact, Casimir scaling for the light-like cusp anomalous dimension

Γg
L

?
= CA/CFΓ

q
L

is still very much an open problem at four loops.
R. Boels et. al., JHEP 1302 (2013) 063; Nucl. Phys. B902 (2016) 387;

A. Grozin et. al., JHEP 1601 (2016) 140; J. Henn et. al., JHEP 1605 (2016) 066

=⇒ new approaches to multi-loop calculations are required!
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How To Survive The Calculation

Use a decent-sized cluster to do numerator algebra.
(∼ 50,000 diagrams)
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How To Survive The Calculation

Use a decent-sized cluster to do numerator algebra.
(∼ 50,000 diagrams)

Crunch lots of integral reductions for up to twelve line integrals
allowing for up to 6 inverse propagators.
(Andreas’s talk Monday)
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How To Survive The Calculation

Use a decent-sized cluster to do numerator algebra.
(∼ 50,000 diagrams)

Crunch lots of integral reductions for up to twelve line integrals
allowing for up to 6 inverse propagators.
(Andreas’s talk Monday)

Use the reductions to write the raw integrand as a
linear combination of scalar master integrals.
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How To Survive The Calculation

Use a decent-sized cluster to do numerator algebra.
(∼ 50,000 diagrams)

Crunch lots of integral reductions for up to twelve line integrals
allowing for up to 6 inverse propagators.
(Andreas’s talk Monday)

Use the reductions to write the raw integrand as a
linear combination of scalar master integrals.

Construct an alternative basis of finite integrals and rewrite
everything in terms of it using auxiliary reductions.
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How To Survive The Calculation

Use a decent-sized cluster to do numerator algebra.
(∼ 50,000 diagrams)

Crunch lots of integral reductions for up to twelve line integrals
allowing for up to 6 inverse propagators.
(Andreas’s talk Monday)

Use the reductions to write the raw integrand as a
linear combination of scalar master integrals.

Construct an alternative basis of finite integrals and rewrite
everything in terms of it using auxiliary reductions.

Evaluate all finite master integrals either
analytically using HyperInt (Erik’s program) or
numerically using FIESTA 4 (this talk).
A. Smirnov, Comput. Phys. Commun. 204 (2016) 189;

T. Hahn, Comput. Phys. Commun. 168 (2005) 78

Robert M. Schabinger Finite Integrals and Four-Loop QCD Form Factors



Outline
Overview And Background

First Results For The Four-Loop Gluon Form Factor
Finite Integrals For Fast Numerical Evaluations

Outlook

N3
f

Master Integrals
N3

f
Part Of The Bare Four-Loop Gluon Form Factor

The Master Integrals For The N3
f Contributions

To The Four-Loop Gluon Form Factor

From the reductions, it seemed initally that 10 master integrals
would appear in the CFN

3
f and CAN

3
f color structures.

Actually, two factorizable topologies drop out of the final results.
All master integrals can be evaluated to all orders in ǫ.

R. J. Gonsalves, Phys. Rev. D28 (1983) 1542; Gehrmann et. al., Phys. Lett. B640 (2006) 252
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N3
f Part Of The Bare Four-Loop Gluon Form Factor

In the MS scheme, we find

Fg
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∣
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in both general Rξ gauge and ξ = 1 background field gauge.
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How Do We Know We Got It Right?

Andreas’s FinRed program could successfully produce the known
results through the finite terms for the N3

f quark form factor.
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How Do We Know We Got It Right?

Andreas’s FinRed program could successfully produce the known
results through the finite terms for the N3

f quark form factor.

The pole terms of O
(

ǫ−3
)

and higher agree with the predictions
of the evolution equation of the gluon form factor.
Moch et. al., JHEP 0508 (2005) 049
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How Do We Know We Got It Right?

Andreas’s FinRed program could successfully produce the known
results through the finite terms for the N3

f quark form factor.

The pole terms of O
(

ǫ−3
)

and higher agree with the predictions
of the evolution equation of the gluon form factor.
Moch et. al., JHEP 0508 (2005) 049

The N3
f gluon cusp anomalous dimension agrees with the

prediction of the Casimir scaling principle!

Γg
4

∣

∣

∣

∣

CFN3
f

= 0

Γg
4

∣

∣

∣

∣

CAN3
f

=
64ζ3
271

−
32

81

Robert M. Schabinger Finite Integrals and Four-Loop QCD Form Factors



Outline
Overview And Background

First Results For The Four-Loop Gluon Form Factor
Finite Integrals For Fast Numerical Evaluations

Outlook

N3
f

Master Integrals
N3

f
Part Of The Bare Four-Loop Gluon Form Factor

How Do We Know We Got It Right?

Andreas’s FinRed program could successfully produce the known
results through the finite terms for the N3

f quark form factor.

The pole terms of O
(

ǫ−3
)

and higher agree with the predictions
of the evolution equation of the gluon form factor.
Moch et. al., JHEP 0508 (2005) 049

The N3
f gluon cusp anomalous dimension agrees with the

prediction of the Casimir scaling principle!

Γg
4

∣

∣

∣

∣

CFN3
f

= 0

Γg
4

∣

∣

∣

∣

CAN3
f

=
64ζ3
271

−
32

81

Robert M. Schabinger Finite Integrals and Four-Loop QCD Form Factors



Outline
Overview And Background

First Results For The Four-Loop Gluon Form Factor
Finite Integrals For Fast Numerical Evaluations

Outlook

N3
f

Master Integrals
N3

f
Part Of The Bare Four-Loop Gluon Form Factor

How Do We Know We Got It Right?

Andreas’s FinRed program could successfully produce the known
results through the finite terms for the N3

f quark form factor.

The pole terms of O
(

ǫ−3
)

and higher agree with the predictions
of the evolution equation of the gluon form factor.
Moch et. al., JHEP 0508 (2005) 049

The N3
f gluon cusp anomalous dimension agrees with the

prediction of the Casimir scaling principle!

Γg
4

∣

∣

∣

∣

CFN3
f

= 0

Γg
4

∣

∣

∣

∣

CAN3
f

=
64ζ3
271

−
32

81

Numerical checks on the expansion coefficients of all
masters to part per mille precision using FIESTA 4.
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From Conventional To Finite Integral Bases
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From Conventional To Finite Integral Bases

For each irreducible topology, test progressively more
complicated integrals for convergence.
E. Panzer, JHEP 1403 (2014) 071
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From Conventional To Finite Integral Bases

For each irreducible topology, test progressively more
complicated integrals for convergence.
E. Panzer, JHEP 1403 (2014) 071

For x = ∆d/2 (the dimension shift divided by two), y = ν −N
(the number of “extra” powers of the propagators or “dots”), and
all fixed non-negative integers n = x+ y, this test is carried out
in practice by considering the integrals which correspond to all
possible non-negative integer solutions {x, y}, beginning with the
n = 0 case corresponding to the basic scalar integral in d = 4− 2ǫ.
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From Conventional To Finite Integral Bases

For each irreducible topology, test progressively more
complicated integrals for convergence.
E. Panzer, JHEP 1403 (2014) 071

For x = ∆d/2 (the dimension shift divided by two), y = ν −N
(the number of “extra” powers of the propagators or “dots”), and
all fixed non-negative integers n = x+ y, this test is carried out
in practice by considering the integrals which correspond to all
possible non-negative integer solutions {x, y}, beginning with the
n = 0 case corresponding to the basic scalar integral in d = 4− 2ǫ.

Rotate from the old basis to the new basis using auxiliary IBPs.

The computationally expensive part at this stage is to perform a
Tarasov shift (Phys. Rev. D54 (1996) 6479) on the old basis and then
IBP reduce the resulting linear combination of integrals in d+ 2
with a number of additional dots equal to the loop order. This
connects the “conventional” integral bases in d and d+ 2; it can
be used iteratively if multiple dimension shifts are required.
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What About The Auxiliary Reductions

Needed For The Basis Rotation?

In his classic paper on dimension shifts, Tarasov also points out that
one can, for any integral topology, eliminate all irreducible numerators
in favor of higher-multiplicity propagators. A single irreducible
numerator is eliminated at the cost of adding L additional dots and
going from a single integral to a linear combination of integrals.
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Outline
Overview And Background

First Results For The Four-Loop Gluon Form Factor
Finite Integrals For Fast Numerical Evaluations

Outlook

The Algorithm
Computational Complexity
Finite Form Factor Integrals And FIESTA 4

What About The Auxiliary Reductions

Needed For The Basis Rotation?

In his classic paper on dimension shifts, Tarasov also points out that
one can, for any integral topology, eliminate all irreducible numerators
in favor of higher-multiplicity propagators. A single irreducible
numerator is eliminated at the cost of adding L additional dots and
going from a single integral to a linear combination of integrals.
Consider the three-loop gluon form factor, where smax = 5:

(10−2ǫ)

(8−2ǫ)

(10−2ǫ) (8−2ǫ)
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What About The Auxiliary Reductions

Needed For The Basis Rotation?

In his classic paper on dimension shifts, Tarasov also points out that
one can, for any integral topology, eliminate all irreducible numerators
in favor of higher-multiplicity propagators. A single irreducible
numerator is eliminated at the cost of adding L additional dots and
going from a single integral to a linear combination of integrals.
Consider the three-loop gluon form factor, where smax = 5:

(10−2ǫ)

(8−2ǫ)

(10−2ǫ) (8−2ǫ)

=⇒ Auxiliary reductions not a problem if using Feynman diagrams!
Robert M. Schabinger Finite Integrals and Four-Loop QCD Form Factors
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For Fixed Program Settings, Finite Integral Bases

Offer Spectacular Performance Enhancements

Let’s continue with our three-loop form factor example

diagram run time relative accuracy diagram run time relative accuracy
(6−2ǫ)

128 s 5.12× 10−6

(4−2ǫ)

39094 s 9.91× 10−4

(6−2ǫ)

192 s 2.68× 10−6

(4−2ǫ)

19025 s 9.38× 10−5

(6−2ǫ)

127 s 2.26× 10−6

(4−2ǫ)

19586 s 1.07× 10−4

up to and including contributions of weight six.
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How About Three-Loop Form Factors @ Weight 8?

Important for our recent paper and as an answer to
K. G. Chetyrkin et. al., Nucl. Phys. B742 (2006) 208

diagram run time relative accuracy run time relative accuracy
(6−2ǫ)

128 s 5.12× 10−6 491 s 2.22× 10−5

(6−2ǫ)

192 s 2.68× 10−6 761 s 5.84× 10−6

(6−2ǫ)

127 s 2.26× 10−6 485 s 8.45× 10−6

It is crucial to use the NegativeTermsHandling = None setting of FIESTA 4!
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Finite Parts Of The Four-Loop Form Factors?

In about a day on an ancient desktop with FIESTA 4, we find

(6−2ǫ)

≈ 3.1808 + 58.829ǫ+O
(

ǫ2
)
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Finite Parts Of The Four-Loop Form Factors?

In about a day on an ancient desktop with FIESTA 4, we find

(6−2ǫ)

≈ 3.1808 + 58.829ǫ+O
(

ǫ2
)

This is the result through to weight 8 with 4 digit absolute accuracy!
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Overall, our IBP algorithm seems strong enough to significantly
ameliorate one of the biggest performance bottlenecks to calculating
the four-loop cusp anomalous dimensions in QCD and we have seen
that FIESTA 4 can deliver acceptably precise results for finite
non-planar twelve-line four-loop integrals if any relevant masters are
inaccessible to us using HyperInt-like methods. In addition, several
other ideas for further research come to mind:

Using Tarasov’s ideas for the IBPs when the payoff is huge.
Implementing a multivariate version of FinRed.
Further N2LO calculations using finite integrals numerically, in
the spirit of what was done recently for double Higgs production.
S. Borowka et. al., Phys. Rev. Lett. 117 (2016) no. 1, 012001

The mixed EW-QCD virtual corrections to Drell-Yan are already
extremely challenging to calculate analytically even though the
integrals are known to be expressible in terms of MPLs.
Di Vita’s talk this year, my talk last year =⇒ Can check using SecDec 3!
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